Universidad de Buenos Aires		Facultad de Ingeniería		
1º Cuatrimestre 2010 75.12 - Análisis Numérico I. Curso 008		Parcial. Primera Oportunidad. Tema 1 Nota		Nota
Padrón:	Apellido y Nombres			

Ejercicio 1. Estos datos se han obtenido buscando una raíz de f(x) = 0 para una cierta función f(x):

i	Sucesión 1			Sucesión 2		
	xi	g1(xi)	Aitken	хi	g2(xi)	
0	0,000000	-0,562500	-0,436008	0,000000	-0,562500	
1	-0,562500	?	-0,452874	-0,562500	-0,458091	
2	?	-0,479044	nd	-0,458091	-0,454747	
3	-0,479044	nd	nd	-0,454747	nd	

- a) Sabiendo que se la columna de Aitken se obtuvo a partir de la Sucesión 1, hallar x2.
- b) Sabiendo que $g1(x) = [1 a.x^2 b.cos(x)]/c$, construya un SEL para obtener a, b y c.
- c) Indicar un método por el cual no podría resolver dicho sistema. Justificar.
- d) Realizar 2 iteraciones mediante el método de Gauss Seidel a partir de $X^{<0>}=(0.1;2.0;1.5)$ e indicar un criterio de corte por el cual se podría tomar la aproximación $X^{<2>}$ hallada como solución del problema.
- e) Estime g1'(x3) y g2'(x3) mediante un método numérico con orden de convergencia O(h).
- f) ¿Qué puede decir sobre la convergencia de g1(x) y g2(x) a partir de lo obtenido en (e)? Justificar

NOTA: Si no pudo hallar X2, tome todos los datos de g2(x). Si no pudo hallar el sistema en (b), tome A.x=B

Ejercicio 2. A partir de una grilla de puntos (x0,y0) (x1;y1) (x2;y2) (x3;y3) se han tomado algunos de ellos según subíndice creciente para generar un Polinomio de Newton Progresivo de grado 1 y un SEL correspondiente a una interpolación por SPLine. Asimismo, con los puntos x0, x1 y x3 se ha generado un Polonomio de Lagrange Baricéntrico.

- a) Indicar en cada caso la cantidad de puntos escogidos, de polinomios generados y el grado de los mismos.
- b) Incrementar en un grado el Polinomio de Newton para obtener una mejor aproximación de PN2(x3)
- c) Estimar Cp sabiendo que con una perturbación positiva del 5% el valor de x3 se ha hallado PN2(x3)*. En caso de no haber hallado PN2(x3), desarrollar Cp y Te por diagrama de proceso para un polinomio genérico de grado 2.

Ejercicio 3. La cota del error absoluto total del método del trapecio de integración numérica ($A = \frac{h}{2}[y_0 + y_1]$) está dada

$$\text{por la siguiente expresión: } e_{\scriptscriptstyle A} = A \cdot \left\{ \left[\frac{\left| e_{\scriptscriptstyle y_0} \right| + \left| e_{\scriptscriptstyle y_1} \right|}{\left| y_0 + y_1 \right|} + \frac{\left| e_h \right|}{h} \right] + \left[\mu_1 + \mu_2 + \mu_3 \right] \right\} + \left| \frac{f^{<2>}(\xi)}{12} \right| h^3 \text{ Determine los coeficientes C}_{\rm p}$$

y T_e, e indique qué representa el término adicional.

Universidad de Buenos Aires		Facultad de Ingeniería		
1º Cuatrimestre 2010 75.12 - Análisis Numérico I. Curso 008		Parcial. Primera Oportunidad. Tema 2 Nota		Nota
Padrón:	Apellido y Nombres			

Ejercicio 1. Estos datos se han obtenido buscando una raíz de f(x) = 0 para una cierta función f(x):

i	Sucesión 1			Sucesión 2	
	хi	g1(xi)	Aitken	хi	g2(xi)
0	0,000000	-0,687500	-0,494352	0,000000	-0,687500
1	-0,687500	?	-0,521523	-0,687500	-0,533742
2	?	-0,584991	nd	-0,533742	-0,526875
3	-0,584991	nd	nd	-0,526875	nd

- a) Sabiendo que se la columna de Aitken se obtuvo a partir de la Sucesión 1, hallar x2.
- b) Sabiendo que $g1(x) = [1 a.x^2 b.cos(x)]/c$, construya un SEL para obtener a, b y c.
- c) Indicar un método por el cual no podría resolver dicho sistema. Justificar.
- d) Realizar 2 iteraciones mediante el método de Gauss Seidel a partir de $X^{<0>}=(0.1;2.0;1.5)$ e indicar un criterio de corte por el cual se podría tomar la aproximación $X^{<2>}$ hallada como solución del problema.
- e) Estime g1'(x3) y g2'(x3) mediante un método numérico con orden de convergencia O(h).
- f) ¿Qué puede decir sobre la convergencia de g1(x) y g2(x) a partir de lo obtenido en (e)? Justificar

NOTA: Si no pudo hallar X2, tome todos los datos de g2(x). Si no pudo hallar el sistema en (b), tome A.x=B

Ejercicio 2. A partir de una grilla de puntos (x0,y0) (x1;y1) (x2;y2) (x3;y3) se han tomado algunos de ellos según subíndice creciente para generar un Polinomio de Newton Progresivo de grado 1 y un SEL correspondiente a una interpolación por SPLine. Asimismo, con los puntos x0, x1 y x3 se ha generado un Polonomio de Lagrange Baricéntrico. De todos los datos obtenidos, se ofrecen solamente los siguientes:

- a) Indicar en cada caso la cantidad de puntos escogidos, de polinomios generados y el grado de los mismos.
- b) Incrementar en un grado el Polinomio de Newton para obtener una mejor aproximación de PN2(x3)
- c) Estimar Cp sabiendo que con una perturbación positiva del 5% el valor de x3 se ha hallado PN2(x3)*. En caso de no haber hallado PN2(x3), desarrollar Cp y Te por diagrama de proceso para un polinomio genérico de grado 2.

Ejercicio 3. La cota del error absoluto total del método del punto medio de integración numérica ($A=2\cdot h\cdot y_0$) está dada por la siguiente expresión: $e_A=A\cdot\left[\frac{|e_h|}{|h|}+\frac{|e_{y_0}|}{|y_0|}+\mu_1\right]+\left|\frac{f^{<2>}(\xi)}{3}\right|h^3$ Determine los coeficientes C_p y T_e , e indique qué representa el término adicional.